土星
2015-2-14 14:09|查看:4685|评论:0|字体:小 中 大 繁体
土星,卡西尼拍摄的土星。
土星,为太阳系八大行星之一,至太阳距离(由近到远)位于第六、体积则仅次于木星。并与木星、天王星及海王星同属气体(类木)巨星。古代中国亦称之镇星或填星。
土星是中国古代人根据五行学说结合肉眼观测到的土星的颜色(黄色)来命名的(按照五行学说即木青、金白、火赤、水黑、土黄)。而其他语言中土星的名称基本上来自希腊/罗马神话传说,例如在欧美各主要语言(英语、法语、西班牙语、俄语、葡萄牙语、德语、意大利语等)中土星的名称来自于罗马神话中的农业之神萨图尔努斯(拉丁文:Saturnus),其他的还有希腊神话中的克洛诺斯(泰坦族,宙斯的父亲,一说其在罗马神话中即萨图尔努斯)、巴比伦神话中的尼努尔塔和印度神话中的沙尼。土星的天文学符号是代表农神萨图尔努斯的镰刀。
土星主要由氢组成,还有少量的氦与微痕元素,内部的核心包括岩石和冰,外围由数层金属氢和气体包覆著。最外层的大气层在外观上通常情况下都是平淡的,虽然有时会有长时间存在的特征出现。土星的风速高达1,800公里/时,明显的比木星上的风快速。土星的行星磁场强度介于地球和更强的木星之间。
土星有一个显著的环系统,主要的成分是冰的微粒和较少数的岩石残骸以及尘土。已经确认的土星的卫星有62颗。其中,土卫六是土星系统中最大和太阳系中第二大的卫星(半径2575KM,太阳系最大的卫星是木星的木卫三,半径2634KM),比行星中的水星还要大;并且土卫六是唯一拥有明显大气层的卫星。
物理特性
土星和地球大小的概略比较。
由于其低密度、高速自转和流体的可变性,土星的外形呈现为一个椭球体,也就是极轴相对扁平而赤道相对突出,它的赤道直径和两极直径之比相差大约10%(前者120,536公里,后者108,728公里)。其它气体行星虽然也是椭球体,但突出程度都较小。虽然土星核心的密度远高于水,但由于存在较厚的大气层,土星仍是太阳系中唯一密度低于水的行星,它的比重是0.69 公克/厘米³。土星的质量是地球的95倍,相较之下木星质量是地球的318倍,但直径只比土星大约20%。木星和土星一起在太阳系持有总行星质量的92%。
内部构造
土星被称为气态行星,但它并不完全是气态的。行星主要包括氢气,在密度为0.01 g/cm3以上时氢气变成了非理想液体。此密度被达到在包含99.9%土星质量的半径。从行星内部直到的核心的温度,压力和密度全都是稳步上升,使在行星的更深层导致氢气转变成金属。
虽然只有少量的直接资料,但标准的行星模型表明,土星的内部结构仍被认为与木星相似,即有一个被氢和氦包围着的小核心。岩石核心的构成与地球相似但密度更高。在核心之上,有更厚的液体金属氢层,然后是数层的液态氢和氦层,在最外层是厚达1,000 公里的大气层,也存在着各种型态冰的踪迹。估计核心区域的质量大约是地球质量的9–22倍。
土星有非常热的内部,核心的温度高达11 700 °C,并且辐射至太空中的能量是它接受来自太阳的能量的2.5倍。大部分能量是由缓慢的重力压缩(克赫历程)产生,但这还不能充分解释土星的热能制造过程。额外的热能可能由另一种机制产生:在土星内部深处,液态氦的液滴如雨般穿过较轻的氢,在此过程中不断地通过摩擦而产生热。
土星示意图
大气层
土星外围的大气层包括96.3%的氢和3.25%的氦,可以侦测到的气体还有氨、乙炔、乙烷、磷化氢和甲烷。上层的云由氨的冰晶组成,较低层的云则由硫化氢铵(NH4SH)或水组成。相对于太阳所含有的丰富的氦,土星大气层中氦的丰盈度明显低得多。
对于比氦重的元素的含量,目前所知不甚精确;但如果假设与太阳系形成时的原始丰盈度是相当的,则可估算出这些元素的总质量是地球质量的19–31倍,而且大部分都存在于土星的核心区域。
云层
土星的温度辐射图:土星南极底部是一个明显的热点。
土星的上层大气与木星相似(在相同定义的前提下),同样都有着一些条纹;但土星的条纹比较暗淡,并且赤道附近的条纹也比较宽。从底部延展至大约10公里高处,是由水冰构成的层次,温度大约是-23 °C。在这之后是硫化氢氨冰的层次,延伸出另外的50公里,温度大约在-93 °C,在这之上是80公里的氨冰云,温度大约是-153 °C。接近顶部,在云层之上200 公里至270 是可以看见的云层顶端,由数层氢和氦构成的大气层。土星的风速是太阳系中第二高的,仅次于海王星,航海家计划的数据显示土星的东风最高可达500 m/s(1,800公里/时)。直到航海家探测器飞越土星,比较纤细的条纹才被观测到。然而从那之后,地基望远镜也被改善到在通常情况下都能够观察到土星的这些细纹。
土星的大气层通常都很平静,偶尔会出现一些持续较长时间的长圆形特征,以及其他在木星上常常出现的特征。1990年,哈柏太空望远镜在土星的赤道附近观察到一朵极大的白云,是在航海家与土星遭遇时未曾看见的,在1994年又观察到另一朵较小的白云风暴。1990年的白云是大白斑的一个例子,这是在每一个土星年(大约30个地球年),当土星北半球夏至的时候所发生的独特但短期的现象。之前的大白斑分别出现在1876、1903、1933和1960年,并且以1933年的最为著名。如果这个周期能够持续,下一场大风暴将在大约2020年发生。
卡西尼号看见的土星,通过环看见的土星呈现蓝色。
来自卡西尼号太空船的最新图像显示,土星的北半球呈现与天王星相似的明亮蓝色(见下图)。这种蓝色非常可能是由瑞利散射造成的,但因为当时土星环遮蔽住了北半球,因此从地球上无法看见这种蓝色。
航海家1号发现北极区的六边形云彩特征,并在2006年被卡西尼号太空船证实。
天文学家通过分析红外线影像发现土星有一个“温暖”的极地漩涡,这种特征在太阳系内是独一无二的。天文学家认为这个点是土星上温度最高的点,土星上其他各处的温度是-185 °C,而该漩涡处的温度则高达-122 °C。
在航海家1号的影像中最先被注意到的是一个长期出现在78°N附近,围绕着北极的六边形漩涡。不同于北极,哈勃太空望远镜所拍摄到的南极区影像有明显的“喷射气流”,但没有强烈的极区漩涡,也没有“六边形的驻波”。但是,NASA报告卡西尼号在2006年11月观测到一个位于南极像飓风的风暴,有着清晰的眼壁。这是很值得注意的观测报告,因为在过去除了地球之外,没有在任何的行星上观测到眼壁云(包括伽利略号太空船在木星的大红斑上都未能发现眼壁云)。
在北极的六边形中每一边的直线长度大约是13 800 公里,整个结构以10h 39 m 24s自转,与行星的无线电波幅射周期一样,这也被认为是土星内部的自转周期。这个六边形结构像大气层中可见的其他云彩一样,在经度上没有移动。
这个现象的规律性的起源仍在猜测之中,多数的天文学家认为是在大气层中某种形式的驻波,但是六边形也许是一种新型态的极光。在实验室的流体转动桶内已经模拟出了多边型结构。
磁层
土星有一个简单的具有对称形状的内在磁场——一个磁偶极子。磁场在赤道的强度为0.2 高斯(20 µT),大约是木星磁场的20分之一,比地球的磁场强大,为地球的20倍;由于强度远比木星的微弱,因此土星的磁层仅延伸至土卫六轨道之外。磁层产生的原因很有可能与木星相似——由金属氢层(被称为“金属氢发电机”)中的电流引起。与其他的行星一样,土星磁层会受到来自太阳的太阳风内的带电微粒影响而产生偏转。卫星土卫六的轨道位于土星磁层的外围,并且土卫六的大气层外层中的带电粒子提供了等离子体。
轨道和自转
六边型风暴特征的动画。
土星和太阳的平均距离超过了1 400 000 000 公里(9天文单位),轨道上运行的平均速度是9.69 公里/秒,所以土星上的一年(即土星绕太阳公转一周)相当于10 759个地球日(或是28.5地球年)。土星的椭圆轨道相对于地球轨道平面的倾角为2.48°,因为离心率为0.056,因此土星与太阳在近日点和远日点(行星在轨道路径上与太阳最近和最远的两个点)之间的距离变化大约为155 000 000 公里。
土星可见的特征(如六边型风暴)的自转速率根据所在纬度的不同而有所不同,各个的区域的自转周期如下:“系统I”的周期是10 h 14 min 00 s(844.3°/d),包含的是赤道区域,从南赤道带的北缘延伸至北赤道带的南缘;其他的纬度都属于周期为10 h 39 min 24 s(810.76°/d)的“系统II”;基于航海家飞越土星时发现的无线电波,“系统III”的周期为10 h 39 min 22.4 s(810.8°/d);因为与系统II非常接近,它可以很大程度上替代系统II。
然而,精确的内部周期仍然未能确定。卡西尼太空船在2004年接近土星时,发现无线电的周期又有可察觉的增加,达到10 h 45 m 45 s(± 36 s)。造成变化的原因仍不清楚,但这种变化被认为是由于无线电的来源在土星内部不同的纬度上运动而改变了自转周期,而不是出自土星本身自转周期上的变化。
而后,在2007年,无线电发射被发现没有跟随着行星一起旋转,而可能是由等离子体圆盘的对流造成的,它也与除了行星的自转之外的其他因素有关。有报道指出,这种测量到的自转周期的变化也许是由土星卫星土卫二上的喷泉活动造成的。由这种活动而散布进入土星轨道的水蒸气被电离,从而影响了土星的磁场,使得磁场的旋转速度相对于土星的自转被稍稍降低。目前还没有方法可以直接测定土星核心的自转速率
在2007年9月的报告中,根据各种测量结果(包括卡西尼、航海家和先锋号的报告)综合而得的对土星自转的最后估计值是10小时32分35秒。
土星环
土星环是太阳系中最引人注目的景象(这张影像是卡西尼太空船在2007年拍摄的)。
土星最为人知的莫过于它的行星环系统了,土星环被认为是太阳系内所观察到的令人印象最深刻的景观。
土星因为它美丽的行星环而出名,它也是最早被发现具有光环的行星。土星环首先被伽利略在1610年7月用他自制的望远镜观察到了,但因为望远镜成象不好,他并没有意识到这是一个环。他在写给托斯卡纳大公的信上说到:“土星不是单一的个体,它由三个部份组成,这些部分几乎都互相接触著,并且彼此间没有相对的运动,它们的连线是与黄道平行的,并且中央部份(土星本体)大约是两侧(环的边缘)的三倍大”。他也把土星描述成是有“耳朵”的。在1612年,土星环以侧面朝向地球,因此看起来似乎是消失不见了,伽利略因此而感到困惑不解,“是土星吞掉了它的孩子?”(指的是希腊神话中,农神为了防止他们的子孙造反夺权,会吃掉自己的孩子)。然后,在1613年他又再次看见了环,这使伽利略更加困惑。
在1655年,克里斯蒂安·惠更斯观测到完整的土星环,他使用了一个比在伽利略时代能得到强大得多的望远镜。惠更斯观测土星并写道:“它(土星)被一个薄且平坦的环环绕着,环与土星没有接触,并且相对黄道倾斜。”
在1675年,乔凡尼·卡西尼确定土星环由许多较小的环组成,中间并且有缝存在着,其中最明显的环缝在不久之后被命名为卡西尼缝。卡西尼缝存在于A环和B环之间,宽度有4800 公里。
在1859年,詹姆斯·克拉克·麦克斯韦提出土星环不可能是固体的,否则将会因为不稳定而碎裂。他认为环是由为数众多的小颗粒组成的,每个颗粒都独立地环绕着土星运行。透过光谱学的研究,立克天文台的詹姆斯·基勒在1895年证实了麦克斯韦的理论。
物理特性
使用简单的现代望远镜或是品质精良的双筒望远镜就可以看见土星环。它在赤道上从距离土星6 630 公里延伸至120 700 公里处,但平均的厚度大约只有20米,主要的成分93%是水冰和少量参杂在其中的复杂有机悬浮物托林,其余7%是无定型的碳,它们的大小从尘土的斑点到一辆小汽车的大小都有。关于土星环的起源有两种主要的理论。一种理论是在19世纪提出的起源于洛希极限,认为环原本是土星的一颗卫星,因为轨道的衰减而落入洛希极限的范围内,因本身不够紧密而被潮汐力扯碎(参见洛希极限),这种理论又演变出卫星被小行星或彗星撞击而瓦解的学说。第二种理论认为它并非来自卫星,而是从形成土星的原星云中直接形成的。
在环中最大的空隙是卡西尼缝和恩克环缝,土星的恩克环缝是在1837年5月28日由恩克于柏林发现的,从地球上就可以看见。两艘航海家太空船都发现环实际上是由数以万计稀薄的小环和空隙构成的复杂结构体。这些结构的产生被认为有好几种不同的成因,许多是由于土星卫星引力的拉扯造成的。其中一些明显的是由土星的微型卫星如土卫十八经过时形成,而其他更多的成因还有待发现;并且有一些小环似乎是由牧羊犬卫星在维护的,像是土卫十六和土卫十七。其他的缝隙可能是与质量较大的卫星轨道周期产生共振造成的,土卫一维系著卡西尼缝的存在,还有更多的环状结构因为受到其他卫星周期性的扰动而产生螺旋状的波浪。
来自卡西尼太空船的资料显示土星环有自己的大气层,与行星本身无关而独立存在。大气中有氧分子(O2),这是来自太阳的紫外线作用与环中的冰而产生的。水分子之间的链结受到紫外线的刺激产生化学作用释放出并抛出了气体,尤其是O2。根据这一模型,大气层中也存在氢气(H2)。这种O2和H2组成的大气层是如此稀薄的,以至于如果均匀分散在环的各处,它的厚度只有一个原子。环中也有稀薄的OH(氧化氢)气体,如同O2一样,这些气体也是水分子的崩解导致的,但这一分解是由高能量离子轰击土卫二抛射出来的水分子所造成的。这些大气层尽管是非常的稀薄,依然还是可以被在地球上空的哈柏太空望远镜检测出来。
土星在它的亮度上呈现复杂的样式。光度的变化大多可以归咎于环的变化,并且在每个轨道周期有两个循环的变化。由于行星轨道的离心率,使得叠加在北半球冲的时候比在南半球冲时更为明亮。
在1980年,航海家1号飞越土星时显示F-环是由三条细环像编辫子一样的纠结在一起,而呈现出复杂的结构;现在知道是在外面的二个环有突起的瘤,造成交织和纠结成团的假象,比较暗的第三个环则在它们的内侧。
土星环
光环的黑暗一面
土星光环是连贯成一整个环的,但人为上或会把其分为朝着太阳与背着太阳的一面。而环的背向太阳的一小部分,因为被土星遮挡,只能由太空船如美国国家航空航天局卡西尼—惠更斯号拍摄并传送回来;比较一下来自2004年3月卡西尼号的与来自先驱者11号的图象:
先驱者11号:1979年9月1日,光环背侧,一个从光环背侧看来最粗的部分
卡西尼—惠更斯号:2004年3月27日,光环前侧,注意看土星在光环上留下的阴影和光环在土星上留下的阴影
环上的轮辐
B环上的轮辐,这幅影像是航海家2号在1981年拍摄的。
在1980年以前,对土星环的结构和行为完全都以万有引力的作用来解释。航海家太空船在B环上发现被称为“轮辐”的辐射线状特征,这些无法用同样的方法来解释,因为它们的存在和绕着环的转动,是与轨道力学不一致的。这些轮辐在背景散射光下呈现黑暗,而在前景散射光下显得明亮。它们被假设是悬浮在圆环平面上的微尘,受到电磁的交互作用而联系在一起,因此它们的转动是与土星的磁气层同步。但是,造成轮辐的确实机制仍然不清楚。
在25年之后,轮辐再度被卡西尼号观测到。它们看起来有季节性的变化,在土星的仲冬或盛夏时消失不见,当土星接近分点时又再度出现。在2004年初,当卡西尼太空船抵达土星时这些轮辐都未出现。基于目前对于辐条的成因的模型,一些科学家推测这些轮辐要到2007年后才会出现。然而,通过对卡西尼拍摄的环影像的持续寻找,发现轮辐在2005年9月5日重新出现。
卫星
土星的四颗卫星:土卫四,土卫六、土卫十六(在环的边缘)土卫十三(中央上方)
土星有为数众多的卫星。精确的数量尚不能确定,所有在环上的大冰块理论上来说都是卫星,而且要区分出是环上的大颗粒还是小卫星是很困难的。到2009年,已经确认的卫星有67颗,其中52颗已经有了正式的名称;还有3颗可能是环上尘埃的聚集体而未能确认。许多卫星都非常的小:34颗的直径小于10 公里,另外13颗的直径小于50 公里,祇有7颗有足够的质量能够以自身的重力达到流体静力平衡,它们与地球的卫星——月球的比较表见下方。
土卫六,土星最大的卫星,是太阳系中唯一有浓厚大气层的卫星,而土星绝大多数的卫星都不大。除了太阳、太阳系的八大行星和木星的卫星木卫三之外,土卫六是太阳系内最重的天体。土卫六的质量占了环绕土星天体(包括土星环和其他质量在土卫六的百分之一到百万分之一的小天体)的总质量的90%。
土星第二大的卫星土卫五可能有自己的环系统。
传统上,土星的卫星的英文名称都以希腊神话中的巨人来命名,这种惯例源自约翰·赫歇尔(威廉·赫歇尔的儿子),土卫一(“Mimas”)和土卫二(“Enceladus”)的发现者,他在自1847年出版的《在好望角的天文观测成果》中提出了这种命名法,理由是Mimas和Enceladus是克洛诺斯(希腊神话中的Saturn)的兄弟姐妹。
土星的主要卫星与地球的卫星月球比较 | ||||||
---|---|---|---|---|---|---|
名称 | 英文名称 (发音提示) | 直径 (公里) | 质量 (公斤) | 轨道半径(公里) | 轨道周期(天) | |
土卫一 | Mimas | ˈmaɪməs | 400 (月球的10% ) | 0.4×1020 (月球的0.05% ) | 185 000 (月球的50% ) | 0.9 (月球的3% ) |
土卫二 | Enceladus | ɛnˈsɛlədəs | 500 (月球的15% ) | 1.1×1020 (月球的0.2% ) | 238 000 (月球的60% ) | 1.4 (月球的5% ) |
土卫三 | Tethys | ˈtiːθɨs | 1060 (月球的30% ) | 6.2×1020 (月球的0.8% ) | 295 000 (月球的80% ) | 1.9 (月球的7% ) |
土卫四 | Dione | daɪˈoʊni | 1120 (月球的30% ) | 11×1020 (月球的1.5% ) | 377 000 (月球的100% ) | 2.7 (月球的10% ) |
土卫五 | Rhea | ˈriːə | 1530 (月球的45% ) | 23×1020 (月球的3% ) | 527 000 (月球的140% ) | 4.5 (月球的20% ) |
土卫六 | Titan | ˈtaɪtən | 5150 (月球的150% ) | 1350×1020 (月球的180% ) | 1 222 000 (月球的320% ) | 16 (月球的60% ) |
土卫八 | Iapetus | aɪˈæpɨtəs | 1440 (月球的40% ) | 20×1020 (月球的3% ) | 3 560 000 (月球的930% ) | 79 (月球的290% ) |
每一颗卫星发现的时间请参考卫星发现时间列表。
土星的探索
古代观测
在史前时代就已经知道土星的存在,在古代,它是除了地球之外已知的五颗行星中最远的一颗,并且有与其特性相符的各式各样的神话。在古罗马神话中它是农神,从这颗行星所采用的名字,它是农业和收获的神祇。罗马人认为他与希腊神克洛诺斯,希腊人认为最外层的行星是神圣的克洛诺斯,而罗马人也承袭这个传统。
在印度占星学,有9个占星用的天体,像是著名的纳瓦格拉哈历(Navagraha,梵文:नवग्रह),土星是其中之一,称为“Sani”或“Shani”,法官在众行星之中,由大家共同评判各自的行为是好或是坏。古代的中国和日本文化依据中国的五行之说选定这颗行星是土星,是在传统上用于自然分类的元素之一。在古希伯来语,土星称为“Shabbathai”,它的天使是卡西尔(Cassiel),意思是智慧之神或有益于身心的;是Agiel(精灵),它更为黑暗的一面就是恶魔(lzaz)。在奥图曼土耳其使用的乌尔都语和马来语,它的名称是“Zuhal”,是从阿拉伯文زحل转化过来的。
使用口径1.5厘米的望远镜就能看见土星环,但直到1610年伽利略用望远镜看了才知道它的存在。他虽然起初认为是在土星两侧的卫星,直到克里斯蒂安·惠更斯使用倍数更高的望远镜才看清楚并认为是环。惠更斯也发现了土星的卫星土卫六。不久之后,卡西尼发现了另外4颗卫星:土卫八、土卫五、土卫三和土卫四。在1675年,卡西尼也发现了著名的卡西尼缝。
之后一段时间都没有进一步的有意义发现,直到1789年威廉·赫歇尔才再发现两颗卫星:土卫一和土卫二。形状不规则的土卫七和土卫六有着共振,是在1848年被英国发现的。
在1899年,威廉·亨利·皮克林发现土卫九,一颗极度不规则卫星,它没有如同更大卫星般的同步转动。菲比是第一颗被发现的这种卫星,它以周期超过一年的逆行轨道绕着土星公转。在20世纪初期,对土卫六的研究在1944年确认他有浓厚的大气层- 这是在太阳系的卫星中很独特的特征。
先锋11号飞越
1979年的9月,先锋11号成为拜访土星的第一个人造天体,它从距离行星云层顶端20 000 公里处飞越,获得了低分辨率的行星和一些卫星的影像,但影像的解析力上不足以分辨表面的特征。这艘太空船也观察了环,发现了稀薄的F-环,并且在朝向太阳的方向观察时原本空白且黑暗的环缝是明亮的,或者换句话说,环缝不是空无一物的。先锋11号也测量了土卫六的温度。
航海家的飞越
在1980年11月,航海家1号太空船拜访了土星系统,送回了第一批行星、环和卫星的高分辨率影像,这是第一次人们可以看清土星表面的变化和围绕着它的各式各样的卫星。航海家1号执行了近掠土卫六的任务,使人们对这颗卫星大气层的认识增进了许多。但同时,它也证实了可见光是难以穿透土卫六大气层的,因此还是未能观察到土卫六表面的详情。这次的近掠也改变了太空船的航向,使它的飞行轨道偏离了太阳系的平面。
差不多在一年之后的1981年8月,航海家2号继续对土星系统进行研究,拍摄了更多土星卫星的近距离照片,并且也发现了土星环和大气发生变化的证据。不幸的是,在飞越期间,太空船的转动平台故障了两三天,使得一些计划中的影像无法拍摄。完成对土星的观测之后,太空船利用土星的重力抛射朝向天王星飞去。
这艘太空船发现并确认了一些新的卫星在接近环或环的内部环绕着土星,也发现了一些新的小环缝:马克士威缝(在C环内的缝)和Keeler环缝(在A环内一个宽42 公里的环缝)。
卡西尼太空船的环绕
从卡西尼号观察到的土星日食。
在2004年7月1日,卡西尼-惠更斯号太空船完成SOI(土星轨道切入)的操纵进入了在土星附近环绕的轨道。在SOI之前,它已经广泛的研究过这个系统。在2004年6月,它首度近距离的飞越土卫九,并送回了高分辨率的影像和数据资料。
卡西尼号飞越土星最大的卫星,土卫六,并且用雷达影像获得了大湖、海岸线以及许多海岛和山的影像。在2004年12月25日释放登陆艇惠更斯号之前,两度飞越土卫六。惠更斯号在2005年1月14日登陆土卫六的表面,在大气层中下降的途中和着陆以后送回了大量的数据。在2005年当中,卡西尼号多次飞越土卫六和其它的冰卫星。卡西尼号最后一次飞越土卫六是在2008年3月23日。
从2005年初,科学家追踪由卡西尼号发现的土星上的闪电。这些闪电释放出的能量比地球上的闪电强了1,000倍。此外,科学家也相信这场风暴是曾经见过的最强烈的一种。
在2006年3月10日,NASA宣布经由卡西尼号的影像发现,在土卫二上的间歇泉喷发出的物质中含有液态水的证据,影像也显示在冰冷的喷泉中有高耸的羽状物散发出的液体显示出有水的颗粒。依据加州理工学院安德鲁英格索尔博士的解释:"太阳系其他的卫星有被数公里厚的冰冻外壳覆盖著的液态水海洋,这与此处在地表之下数米,不超过10米的口袋中有液态水,不知会有什么不同。"
在2006年9月20日,卡西尼号的影像揭露了一个之前未曾发现过的行星环,在较明亮的主要土星环带之外和G与E环之内。明显的,这个环的来源是土星的两颗卫星像陨石一样碰撞的结果。
在2006年7月,卡西尼号首度证明在土卫六的北极附近有碳氢化合物的湖,并在2007年1月获得证实。在2007年3月,另外的影像发现在土卫六的北极附近有碳氢化合物的"海洋",最大的一个几乎有里海那么大。
在2006年10月,太空船在土星的南极侦测到一个直径5,000 公里并有眼墙的飓风。
在2006年当中,太空船发现并证实了四颗新的卫星。它最初的任务在2008年完成第74圈的环绕之后即将结束。然而,美国国家航空航天局在2008年4月15日已经宣布此一任务将再延长两年。
最佳的观测时机
土星冲日模拟影象:2001年-2029年
土星是肉眼可见的五颗行星中距离最远的一颗,其他四颗是水星、金星、火星和木星(天王星和灶神星在黑暗的环境下也能用肉眼看见),并且直到1781年发现天王星之前,是早期的天文学家所知道的最后一颗行星。以肉眼在夜晚看见的土星是一颗明亮的,发出淡黄色光芒的光点,光度通常在+1至0等之间,以29½年的周期在黄道上以黄道带的众星作为背景,绕行天球一周。多数人借助于光学仪器(大的双筒镜或望远镜)的协助,以20倍以上的倍数,就能清楚的看见土星环。
冲的日期 | 与地球的距离(AU) | 土星角直径(不计环) |
---|---|---|
2002年12月17日 | 8.05 | 20.7" |
2003年12月31日 | 8.05 | 20.7" |
2005年1月13日 | 8.08 | 20.6" |
2006年1月28日 | 8.08 | 20.4" |
土星是外行星,在合日(视觉上接近太阳)前后两个月以外,其他时间也适合观测。而跟外行星的性质一样,当冲日时是观测土星最好时候,因为土星冲日时,土星最亮(约0等)之余,视直径(角直径)也最大,而且冲日前后,整夜可见。
在它出现在天空中可以观赏的大部分时间,都是值得鼓励大家观赏的目标。在接近冲(行星的位置在离日度180°之处,也就是在天空中与太阳相对的方向上)的前后时段是观赏土星和土星环的最佳时段。土星在2002年12月17日冲的时候,因为土星环以最有利的角度朝向地球,因此有最大的亮度。
赞助我们 您知道行者物语这些年来一直都是非营利网站吗?我们秉持“思想自由”与“价值共享”的信念,致力于打造一个不受商业操控、专注在读者身上的平台。如果您也认同我们正在努力呈现的观点,请通过左侧二维码赞助我们~
本词条来源于互联网 敏感内容反馈:317379335@qq.com |
分享到: |
专注藏地旅游;江河为墨,大地为纸,跟随千途行远方,见世界!
『圆梦西藏』拉萨+林芝+大峡谷+日喀则+纳木措+羊卓雍措_9日8晚跟团游
¥5100/人起
『深入藏地』西藏阿里南线+珠峰大本营+冈仁波齐转山+古格王朝10日深度游
¥2800/人起
纪录片